La historia del cemento es la historia misma del hombre en la búsqueda de un espacio para vivir con la mayor comodidad, seguridad y protección posible. Desde que el ser humano supero la época de las cavernas, a aplicado sus mayores esfuerzos a delimitar su espacio vital, satisfaciendo primero sus necesidades de vivienda y después levantando construcciones con requerimientos específicos.
Templos, palacios, museos son el resultado del esfuerzo que constituye las bases para el progreso de la humanidad. El pueblo egipcio ya utilizaba un mortero – mezcla de arena con materia cementosa – para unir bloques y lozas de piedra al elegir sus asombrosas construcciones. Los constructores griegos y romanos descubrieron que ciertos depósitos volcánicos, mezclados con caliza y arena producían un mortero de gran fuerza, capaz de resistir la acción del agua, dulce o salada. Un material volcánico muy apropiado para estar aplicaciones lo encontraron los romanos en un lugar llamado Pozzuoli con el que aun actualmente lo conocemos como pozoluona. Investigaciones y descubrimientos a lo largo de miles de años, nos conducen a principios del año pasado, cuando en Inglaterra fue patentada una mezcla de caliza dura, molida y calcinada con arcilla, al agregársele agua, producía una pasta que de nuevo se calcinaba se molía y batía hasta producir un polvo fino que es el antecedente directo de nuestro tiempo. Nota El nombre del cemento Portland le fue dado por la similitud que este tenia con la piedra de la isla de Portland del canal ingles. La aparición de este cemento y de su producto resultante el concreto a sido un factor determinante para que el mundo adquiere una fisionomía diferente. Edificios, calles, avenidas, carreteras, presas y canales, fabricas, talleres y casas, dentro del mas alto rango de tamaño y variedades nos dan un mundo nuevo de comodidad, de protección y belleza donde realizar nuestros mas ansiados anhelos, un mundo nuevo para trabajar, para crecer, para progresar, para vivir.
1824: - James Parker, Joseph Aspdin patentan al Cemento Portland, materia que obtuvieron de la calcinación de alta temperatura de una Caliza Arcillosa.
1845: - Isaac Johnson obtiene el prototipo del cemento moderno quemado, alta temperatura, una mezcla de caliza y arcilla hasta la formación del "clinker".
1868: - Se realiza el primer embarque de cemento Portland de Inglaterra a los Estados Unidos.
1871: - La compañía Coplay Cement produce el primer cemento Portland en lo Estados Unidos.
1904: -
1906: - En C.D. Hidalgo Nuevo Leon se instala la primera fabrica para la producción de cemento en Mexico, con una capacidad de 20,000 toneladas por año.
1992: - CEMEX se considera como el cuarto productor de cemento a nivel MUNDIAL con una producción de 30.3 millones de toneladas por año.
EL CONCRETO
El concreto es básicamente una mezcla de dos componentes:
Agregado y pasta. La pasta, compuesta de Cemento Portland y agua, une a los agregados (arena y grava o piedra triturada) para formar una masa semejante a una roca pues la pasta endurece debido a la reacción química entre el Cemento y el agua. Los agregados generalmente se dividen en dos grupos: finos y gruesos
Los agregados finos consisten en arenas naturales o manufacturadas con tamaños de partícula que pueden llegar hasta 10mm; los agregados gruesos son aquellos cuyas partículas se retienen en la malla No. 16 y pueden variar hasta
• Se incrementa la resistencia a la compresión y a la flexión.
• Se tiene menor permeabilidad, y por ende mayor hermeticidad y menor absorción.
• Se incrementa la resistencia al intemperismo.
• Se logra una mejor unión entre capas sucesivas y entre el concreto y el esfuerzo.
• Se reducen las tendencias de agregamientos por contracción.
Entre menos agua se utilice, se tendrá una mejor calidad de concreto – a condición que se pueda consolidar adecuadamente. Menores cantidades de agua de mezclado resultan en mezclas mas rígidas; pero con vibración, a un las mezclas mas rígidas pueden ser empleadas. Para una calidad dada de concreto, las mezclas mas rígidas son las mas económicas. Por lo tanto, la consolidación del concreto por vibración permite una mejora en la calidad del concreto y en la economía. Las propiedades del concreto en estado fresco ( plástico) y endurecido, se puede modificar agregando aditivos al concreto, usualmente en forma liquida, durante su dosificación. Los aditivos se usan comúnmente para (1) ajustar el tiempo de fraguado o endurecimiento, (2) reducir la demanda de agua, (3) aumentar la trabajabilidad, (4) incluir intencionalmente aire, y (5) ajustar otras propiedades del concreto. Después de un proporcionamiento adecuado, así como, dosificación, mezclado, colocación, consolidación, acabado, y curado, el concreto endurecido se transforma en un material de construcción resistente, no combustible, durable, resistencia al desgaste y prácticamente impermeable que requiere poco o nulo mantenimiento. El concreto también es un excelente material de construcción porque puede moldearse en una gran variedad de formas, colores y texturizados para ser usado en un numero ilimitado de aplicaciones.
El concreto recién mezclado debe ser plástico o semifluido y capaz de ser moldeado a mano. Una mezcla muy húmeda de concreto se puede moldear en el sentido de que puede colocarse en una cimbra, pero esto no entra en la definición de " plástico " aquel material que es plegable y capaz de ser moldeado o formado como un terrón de arcilla para moldar.
En una mezcla de concreto plástico todos los granos de arena y las piezas de grava o de piedra que eran encajonados y sostenidos en suspensión. Los ingredientes no están predispuestos a segregarse durante el transporte; y cuando el concreto endurece, se transforma en una mezcla homogénea de todos los componentes. El concreto de consistencia plástica no se desmorona si no que fluye como liquido viscoso sin segregarse. El revenimiento se utiliza como una medida de la consistencia del concreto. Un concreto de bajo revenimiento tiene una consistencia dura. En la practica de la construcción, los elementos delgados de concreto y los elementos del concreto fuertemente reforzados requieren de mezclas trabajables, pero jamás de mezclas similares a una sopa, para tener facilidad en su colocación. Se necesita una mezcla plástica para tener resistencia y para mantener su homogeneidad durante el manejo y la colocación. Mientras que una mezcla plástica es adecuada para la mayoría con trabajos con concreto, se puede utilizar aditivos superfluidificantes para adicionar fluidez al concreto en miembros de concretos delgados o fuertemente reforzados.
MEZCLADO:
Los 5 componentes básicos del concreto se muestran separadamente en la figura " A " para asegurarse que estén combinados en una mezcla homogénea se requiere de esfuerzo y cuidado. La secuencia de carga de los ingredientes en la mezcladora representa un papel importante en la uniformidad del producto terminado. Sin embargo, se puede variar esa secuencia y aun así producir concreto de calidad. Las diferentes secuencias requieren ajustes en el tiempo de adicionamiento de agua, en el numero total de revoluciones del tambor de la mezcladora, y en la velocidad de revolución. Otros factores importantes en el mezclado son el tamaño de la revoltura en la relación al tamaño del tambor de la mezcladora, el tiempo transcurrido entre la dosificación y el mezclado, el diseño, la configuración y el estado del tambor mezclador y las paletas. Las mezcladoras aprobadas, con operación y mantenimiento correcto, aseguran un intercambio de materiales de extremo a extremo por medio de una acción de rolado, plegado y amasado de la revoltura so se mezcla el concreto.
TRABAJABILIDAD DEL CONCRETO
La facilidad de colocar, consolidar y acabar al concreto recién mezclado. se denomina trabajabilidad. El concreto debe ser trabajable pero no se debe segregar excesivamente. El sangrado es la migración de el agua hacia la superficie superior del concreto recién mezclado provocada por el asentamiento de los materiales Sólidos – Cemento, arena y piedra dentro de la masa.
El asentamiento es consecuencia del efecto combinado del la vibración y de la gravedad. Un sangrado excesivo aumenta la relación Agua - Cemento cerca de la superficie superior, pudiendo dar como resultado una capa superior débil de baja durabilidad, particularmente si se lleva acabo las operaciones de acabado mientras esta presente el agua de sangrado. Debido a la tendencia del concreto recién mezclado a segregarse y sangrar, es importante transportar y colocar cada carga lo mas cerca posible de su posición final. El aire incluido mejor a la trabajabilidad y reduce la tendencia del concreto fresco de segregarse y sangrar.
CONSOLIDACIÓN:
La vibración pone en movimiento a las partículas en el concreto recién mezclado, reduciendo la fricción entre ellas y dándole a la mezcla las cualidades movilies de un fluido denso. La acción vibratoria permite el uso de la mezcla dura que contenga una mayor proporción de agregado grueso y una menor proporción de agregado fino. Empleando un agregado bien graduado, entre mayor sea el tamaño máximo del agregado en el concreto, habrá que llenar pasta un menor volumen y existirá una menor área superficial de agregado por cubrir con pasta, teniendo como consecuencia que una cantidad menor de agua y de cemento es necesaria. con una consolidación adecuada de las mezclas mas duras y ásperas pueden ser empleadas, lo que tiene como resultado una mayor calidad y economía. Si una mezcla de concreto es lo suficientemente trabajable para ser consolidada de manera adecuada por varillado manual, puede que no exista ninguna ventaja en vibrarla. De hecho, tales mezclas se pueden segregar al vibrarlas. Solo al emplear mezclas mas duras y ásperas se adquieren todos los beneficios de l vibrado. El vibrado mecánico tiene muchas ventajas. Los vibradores de alta frecuencia posibilitan la colocación económica de mezclas que no son facilites de consolidar a mano bajo ciertas condiciones.
HIDRATACIÓN, TIEMPO DE FRAGUADO, ENDURECIMIENTO.
La propiedad de liga de las pastas de cemento Portland se debe a la reacción química entre el cemento y el agua llamada hidratación. El cemento Portland no es un compuesto químico simple, sino que es una mezcla de muchos compuestos.
Cuatro de ellos conforman el 90% o mas de el peso del cemento Portland y son: el silicato tri cálcico, el silicato dicálcico, el aluminato tri cálcico y el aluminio ferrito tetracalcico.Ademas de estos componentes principales, algunos otros desempeñan papeles importantes en el proceso de hidratación. Los tipos de cemento Portland contienen los mismos cuatro compuestos principales, pero en proporciones diferentes. Cuando el Clinker (el producto del horno que se muele para fabricar el cemento Portland) se examina al microscopio, la mayoría de los compuestos individuales del cemento se pueden identificar y se puede determinar sus cantidades. Sin embargo, los granos mas pequeños evaden la detección visual. El diámetro promedio de una partícula de cemento típica es de aproximadamente 10 micras, o una centésima de milímetro. Si todas las partículas de cemento fueran las promedio, el cemento Portland contendría aproximadamente 298,000 millones de granos por kilogramo, pero de hecho existen unos 15 billones de partículas debido al alto ronago de tamaños de partícula. Las partículas en un kilogramo de cemento Portland tiene una área superficial aproximada de
Es la medula del concreto. La composición química del silicato de calcio hidratado es en cierto modo variable, pero contiene cal (CaO) y sílice (Si02), en una proporción sobre el orden de
Entre menos porosa sea la pasta de cemento, mucho mas resistente es el concreto. Por lo tanto, cuando se mezcle el concreto no se debe usar una cantidad mayor de agua que la absolutamente necesaria para fabricar un concreto plástico y trabajable. A un entonces, el agua empleada es usualmente mayor que la que se requiere para la completa hidratación del cemento. La relación mínima Agua – Cemento (en peso) para la hidratación total es aproximadamente de
VELOCIDAD DE SECADO DEL CONCRETO
El concreto ni endurece ni se cura con el secado. El concreto (o de manera precisa, el cemento en el contenido) requiere de humedad para hidratarse y endurecer. El secado del concreto únicamente esta relacionado con la hidratación y el endurecimiento de manera indirecta. Al secarse el concreto, deja de ganar resistencia; el hecho de que este seco, no es indicación de que haya experimentado la suficiente hidratación para lograr las propiedades físicas deseadas. El conocimiento de la velocidad de secado es útil para comprender las propiedades o la condición física del concreto. Por ejemplo, tal como se menciono, el concreto debe seguir reteniendo suficiente humedad durante todo el periodo de curado para que el cemento pueda hidratarse. El concreto recién colado tiene agua abundante, pero a medida de que el secado progresa desde la superficie hacia el interior, el aumento de resistencia continuara a cada profundidad únicamente mientras la humedad relativa en ese punto se mantenga por encima del 80%. La superficie de un piso de concreto que no a tenido suficiente curado húmedo es una muestra común. Debido a que se seca rápidamente, el concreto de la superficie es débil y se produce descascaramiento en partículas finas provocado por el transito. Asimismo, el concreto se contrae al, secarse, del mismo modo que lo hacen la madera, papel y la arcilla (aunque no tanto). La contracción por secado es una causa fundamental de agrietamiento, y le ancho de las grietas es función del grado del secado. En tanto que la superficie del concreto se seca rápidamente, al concreto en el interior le lleva mucho mas tiempo secarse. Note que luego de 114 días de secado natural el concreto aun se encuentra muy húmedo en su interior y que se requiere de 850 días para que la humedad relativa en el concreto descendiera al 50%.
El contenido de humedad en elementos delgados de concreto que han sido secados al aire con una humedad relativa de 50% a 90% durante varios meses es de 1% a 2% en peso del concreto, del contenido original de agua, de las condiciones de secado y del tamaño del elemento de concreto. El tamaño y la forma de un miembro de concreto mantienen una relación importante como la velocidad de secado. Los elementos del concreto de gran área superficial en relación a su volumen (tales como losas de piso) se secan con mucho mayor rapidez que los grandes volúmenes de concreto con ares superficiales relativamente pequeñas (tales como los estribos de puentes). Muchas otras propiedades del concreto endurecido se ven también afectadas por su contenido de humedad; en ellas incluye la elasticidad, flujo plástico, valor de aislamiento, resistencia al fuego, resistencia al desgaste, conductividad eléctrica, durabilidad.
LA RESISTENCIA DEL CONCRETO
La resistencia a la compresión se puede definir como la máxima resistencia medida de un espécimen de concreto o de mortero a carga axial. Generalmente se expresa en kilogramos por centímetro cuadrado (Kg./cm2) a una edad de 28 días se le designe con el símbolo f’ c. Para de terminar la resistencia a la compresión, se realizan pruebas especimenes de mortero o de concreto; en los Estados Unidos, a menos de que se especifique de otra manera, los ensayes a compresión de mortero se realizan sobre cubos de
El valor de la resistencia a la tensión del concreto es aproximadamente de 8% a 12% de su resistencia a compresión y a menudo se estima como
RESISTENCIA A CONGELACION Y DESHIELO.
Del concreto utilizado en estructuras y pavimentos, se espera que tenga una vida larga y un mantenimiento bajo. Debe tener buena durabilidad para resistir condiciones de exposición anticipadas. El factor de intemperismo mas destructivo es la congelación y el deshielo mientras el concreto se encuentra húmedo, particularmente cuando se encuentra con la presencia de agentes químicos descongelantes. El deterioro provocado por el congelamiento del agua en la pasta, en las partículas del agregado o en ambos. Con la inclusión de aire es sumamente resistente a este deterioro. Durante el congelamiento, el agua se desplaza por la formación de hielo en la pasta se acomoda de tal forma que no resulta perjudicial; las burbujas de aire en la pasta suministran cámaras donde se introduce el agua y así se alivia la presión hidráulica generada. Cuando la congelación ocurre en un concreto que contenga agregado saturado, se pueden generar presiones hidráulicas nocivas dentro del agregado.
El agua desplazada desde las partículas del agregado durante la formación del hielo no puede escapar lo suficientemente rápido hacia la pasta circundante para aliviar la presión. Sin embargo, bajo casi todas las condiciones de exposición, una pasta de buena calidad (de baja relación Agua – Cemento) evitara que la mayor parte de las partículas de agregado se saturen. También, si la pasta tiene aire incluido, acomodara las pequeñas cantidades de agua en exceso que pudieran ser expulsadas por los agregados, protegiendo así al concreto contra daños por congelación y deshielo. (1): El concreto con aire incluido es mucho mas resistente a los ciclos de congelación y deshielo que el concreto sin aire incluido, (2): el concreto con una relación Agua – Cemento baja es mas durable que el concreto con una relación Agua – Cemento alta, (3) un periodo de secado antes de la exposición a la congelación y el deshielo beneficia sustancialmente la resistencia a la congelación y deshielo beneficia sustancialmente la resistencia a la congelación y el deshielo del concreto con aire incluido , pero no beneficia de manera significativa al concreto sin aire incluido. El concreto con aire incluido con una relación Agua – Cemento baja y con un contenido de aire de 4% a 8% soportara un gran numero de ciclos de congelación y deshielo sin presentar fallas. La durabilidad a la congelación y deshielo se puede determinar por el procedimiento de ensaye de laboratorio ASTM C
PERMEABILIDAD Y HERMETICIDAD.
El concreto empleado en estructuras que retengan agua o que estén expuestas a mal tiempo o a otras condiciones de exposición severa debe ser virtualmente impermeable y hermético. La hermeticidad se define a menudo como la capacidad del concreto de refrenar o retener el agua sin escapes visibles.
La permeabilidad se refiere a la cantidad de migración de agua a través del concreto cuando el agua se encuentra a presión, o a la capacidad del concreto de resistir la penetración de agua u atrás sustancias (liquido, gas, iones, etc.). Generalmente las mismas propiedades que convierten al concreto menos permeable también lo vuelven más hermético. La permeabilidad total del concreto al agua es una función de la permeabilidad de la pasta, de la permeabilidad y granulometría del agregado, y de la proporción relativa de la pasta con respecto al agregado. La disminución de permeabilidad mejora la resistencia del concreto a la restauración, a l ataque de sulfatos y otros productos químicos y a la penetración del Ion cloruro. La permeabilidad también afecta la capacidad de destrucción por congelamiento en condiciones de saturación. Aquí la permeabilidad de la pasta es de particular importancia porque la pasta recubre a todos los constituyentes del concreto. La permeabilidad de la pasta depende de la relación Agua – Cemento y del agregado de hidratación del cemento o duración del curado húmedo. Un concreto de baja permeabilidad requiere de una relación Agua – Cemento baja y un periodo de curado húmedo adecuado. Inclusión de aire ayuda a la hermeticidad aunque tiene un efecto mínimo sobre la permeabilidad aumenta con el secado. La permeabilidad de una pasta endurecida madura mantuvo continuamente rangos de humedad de 0.1x10E- 12cm por seg. Para relaciones Agua – Cemento que variaban de
La permeabilidad de rocas comúnmente utilizadas como agregado para concreto varia desde aproximadamente 1.7 x10E9 hasta 3.5x10E-
RESISTENCIA AL DESGASTE.
Los pisos, pavimentos y estructuras hidráulicas están sujetos al desgaste; por tanto, en estas aplicaciones el concreto debe tener una resistencia elevada a la abrasión. Los resultados de pruebas indican que la resistencia a la abrasión o desgaste esta estrechamente relacionada con la resistencia la compresión del concreto. Un concreto de alta resistencia a compresión tiene mayor resistencia a la abrasión que un concreto de resistencia a compresión baja. Como la resistencia a la compresión depende de la relación Agua – Cemento baja, así como un curado adecuado son necesarios para obtener una buena resistencia al desgaste. El tipo de agregado y el acabado de la superficie o el tratamiento utilizado también tienen fuerte influencia en la resistencia al desgaste. Un agregado duro es más resistente a la abrasión que un agregado blando y esponjoso, y una superficie que ha sido tratada con llana de metal resistente más el desgaste que una que no lo ha sido. Se pueden conducir ensayes de resistencia a la abrasión rotando balines de acero, ruedas de afilar o discos a presión sobre la superficie (ASTM 779). Se dispone también de otros tipos de ensayes de resistencia a la abrasión (ASTM C418 y C944).
AGREGADOS PARA EL CONCRETO
Los agregados finos y gruesos ocupan comúnmente de 60% a 75% del volumen del concreto (70% a 85% en peso), e influyen notablemente en las propiedades del concreto recién mezclados y endurecidos, en las proporciones de la mezcla, y en la economía. Los agregados finos comúnmente consisten en arena natural o piedra triturada.
Los agregados gruesos consisten en una grava o una combinación de grava o agregado triturado cuyas partículas sean predominantemente mayores que 5mm y generalmente entre
Un material es una sustancia sólida natural que tiene estructura interna ordenada y una composición química que varía dentro de los límites muy estrechos. Las rocas (que dependiendo de su origen se pueden clasificar como ígneas, sedimentarias o metamórficas), se componen generalmente de varios materiales. Por ejemplo, el granito contiene cuarzo, feldespato, mica y otros cuantos minerales; la mayor parte de las calizas consisten en calcita, dolomita y pequeñas cantidades de cuarzo, feldespato y arcilla. El intemperismo y la erosión de las rocas producen partículas de piedra, grava, arena, limo, y arcilla. El concreto reciclado, o concreto de desperdicio triturado, es una fuente factible de agregados y una realidad económica donde escaseen agregados de calidad. Los agregados de calidad deben cumplir ciertas reglas para darles un uso ingenieril optimo: deben consistir en partículas durables, limpias, duras, resistentes y libres de productos químicos absorbidos, recubrimientos de arcilla y otros materiales finos que pudieran afectar la hidratación y la adherencia la pasta del cemento. Las partículas de agregado que sean desmenuzables o susceptibles de resquebrajarse son indeseables. Los agregados que contengan cantidades apreciables de esquistos o de otras rocas esquistosas, de materiales suaves y porosos, y ciertos tipos de horsteno deberán evitarse en especial, puesto que tiene baja resistencia al intemperismo y pueden ser causa de defectos en la superficie tales como erupciones.
La granulometría es la distribución de los tamaños de las partículas de un agregado tal como se determina por análisis de tamices (norma ASTM C 136). El tamaño de partícula del agregado se determina por medio de tamices de malla de alambre aberturas cuadradas. Los siete tamices estándar ASTM C 33 para agregado fino tiene aberturas que varían desde la malla No. 100(150 micras) hasta
Los números de tamaño (tamaños de granulometría), para el agregado grueso se aplican a las cantidades de agregado (en peso), en porcentajes que pasan a través de un arreglo de mallas. Para la construcción de vías terrestres, la norma ASTM D 448 enlista los trece números de tamaño de
La granulometría y el tamaño máximo de agregado afectan las proporciones relativas de los agregados así como los requisitos de agua y cemento, la trabajabilidad, capacidad de bombeo, economía, porosidad, contracción y durabilidad del concreto.
GRANULOMETRIA DE LOS AGREGADOS FINOS
Depende del tipo de trabajo, de la riqueza de la mezcla, y el tamaño máximo del agregado grueso. En mezclas mas pobres, o cuando se emplean agregados gruesos de tamaño pequeño, la granulometría que mas se aproxime al porcentaje máximo que pasa por cada criba resulta lo mas conveniente para lograr una buena trabajabilidad. En general, si la relación agua – cemento se mantiene constante y la relación de agregado fino a grueso se elige correctamente, se puede hacer uso de un amplio rango de granulometría sin tener un efecto apreciable en la resistencia. Entre mas uniforme sea la granulometría , mayor sera la economía. Estas especificaciones permiten que los porcentajes minimos (en peso) del material que pasa las mallas de 0.30mm (No. 50) y de 15mm (No. 100) sean reducidos a 15% y 0%, respectivamente, siempre y cuando:
1): El agregado que se emplee en un concreto que contenga mas de
2): Que el modulo de finura no sea inferior a 2.3 ni superior a 3.1, el agregado fino se deberá rechazar a menos de que se hagan los ajustes adecuados en las proporciones el agregado fino y grueso.
Las cantidades de agregado fino que pasan las mallas de
GRANULOMETRÍA DE LOS AGREGADOS GRUESOS
El tamaño máximo del agregado grueso que se utiliza en el concreto tiene su fundamento en la economía. Comúnmente se necesita mas agua y cemento para agregados de tamaño pequeño que para tamaños mayores, para revenimiento de aproximadamente
El numero de tamaño de la granulometría (o tamaño de la granulometría). El numero de tamaño se aplica a la cantidad colectiva de agregado que pasa a través de un arreglo mallas. El tamaño máximo nominal de un agregado, es el menor tamaño de la malla por el cual debe pasar la mayor parte del agregado. La malla de tamaño máximo nominal, puede retener de 5% a 15% del del agregado dependiendo del numero de tamaño. Por ejemplo, el agregado de numero de tamaño 67 tiene un tamaño máximo de
1): Un quinto de la dimensión mas pequeña del miembro de concreto.
2): Tres cuartos del espaciamiento libre entre barras de refuerzo.
3): Un tercio del peralte de las losas.
No hay comentarios:
Publicar un comentario